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Abstract — The possibility of diminishing the danger of trailing vortices through thermal forcing is investigated. It is shown that heating the vortices
would have two beneficial effects. First, it would cause the vortices to descend more rapidly thus clearing the flight path more quickly. Secahnd, it woul
cause the vortices to draw closer together, thus greatly increasing the growth rate of the short-wave instabilities that can ultimately dediceg the v
through cross-diffusiorl] 2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Vortices in the wake of heavy aircraft pose a serious threat to following aircraft. The danger is particularly
severe during landings and takeoffs for two reasons: the extension of the flaps of the leading aircraft may create
trailing vortices that are even stronger than the wing tip vortices and the proximity of the following aircraft to
the ground means that a small perturbation in its trajectory may be disastrous. The current strategy for dealing
with this problem involves simply allowing sufficient time between landings and takeoffs. This scheme relies
essentially on two mechanisms that lessen the dangers of the trailing vortices. The first is that the vortices advect
each other out of the flight path of the following plane (Rennich [1]). This is possible because the vortices come
in counter-rotating pairs oriented in such a way that they propagate downward. This effect alone is not sufficient
to eliminate the problem on runways because the vortices are not destroyed when they hit the runway but
rebound and interact in a complicated way that does not ensure there dispersal (Orlandi [2]; Spalart [3]). Thus,
near the runway, secondary effects must come into play to diminish the threat of these vortices. For example,
cross winds can move the vortices laterally away from the runway. But the actual destruction of the vortices
only comes about through vortex instabilities that ensue when vortices come close together. These instabilities
of the two vortex system are initiated by ambient turbulence (Spalart [3]) and mix the opposite signed vorticity
together destroying the strength of the vortices in a process called cross-diffusion. If the trailing vortices could
be brought closer together this would at once increase the speed at which they leave the flight path and promote
instabilities that eventually result in their destruction. This may be accomplished through the effect of heating
the vortices as we will discuss below.

Before dealing with the effect of thermal forcing, we will review some of the relevant issues regarding the use
of vortex instabilities to accelerate vortex decay. To be explicit in the discussion, we will refer to the schematic
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diagram infigure 1 Trailing vortices come in counter-rotating pairs. The wing tips of the plane each shed one
vortex in such a pair. Also the flaps when extended shed pairs of vortices. The diagiigararlshows the
separation distanck between the centers of the vortices, the core size or radargd the orientation of our
coordinate system. Thedirection, pointing from the center of the positive vortex toward the negative, we will
call the spanwise direction. The direction along the corezth@ection, we will refer to as axial. The signs
associated with the centers of the vortices in the figure refer to the sign ptdraponent of vorticityw,. For

the orientation of the pair of counter-rotating vortices shown in the figure, the propagation by mutual advection
is in the negativer direction.

The strength of a vortex is measured by its circulatio he velocity induced by the each vortex outside the
core of the vortex decays only &2 r wherer is the distance from the center of the vortex to the field point
of interest. Thus the speed of descent of the dipolar paieisl'| /27 b because each vortex is simply advected
by the velocity field induced by the other vortex. A useful dimensional time=s275%/|T'|. In one period
7, the trailing vortices descend a distanceboffo add some numbers to the discussion, we could consider
the wing tip vortices of a large commercial aircraft. Typical values could be takén=a50 m,a =5 m,

I' =500 n?/s (Rennich [1]). The descent velocity would then be about 2 m/s and the peviodld be about

30 s. An approach speed of about 260 km/hr, would imply that the plane travels about 2 km i thagis

about 1 nautical mile. Current regulations require require about a 6 nautical mile separation, that isabout 6
in time, following such an aircraft. This is about double the distance required between planes based on other
safety considerations (Spalart [3]). Thus our goal should be to safely reduce this interval.

The maximum velocity due to a vortex of given strength or circulalistales a$'/a and occurs within the
core. Thus to some extent the dangerous effects of the vortex of given strength can be decreased by increasing its
core radius, which can be accomplished by turbulent diffusion. This will not however diminish the circulation
and, hence, the velocity some distance from the core remains undiminished. Unfortunately, there is no simple
way to decrease the circulation of the trailing vortices. Even if there was a way to reduce the strength of the
vortices somewhat near the source, perhaps this is not advisable because the descent speed of the vortices
would correspondingly be decreased and this is not desirable. However, if the two counter rotating vortices
could be brought close together after leaving the flight path, this would be ideal. It is then possible to mix
the oppositely signed vorticity from these vortices and hence cancel out the circulation by cross diffusion as
mentioned above. There has been a great deal of study of instabilities of the vortex pair that would increase
their interaction and hence promote cross-diffusion. One such instability is the Crow [4] instability. The effects
of the Crow instability can be seen on clear days when airplanes fly at high altitudes and their contrails are
visible. As the instability unfolds, the contrails merge at places to form elongated rings or loops. Although
the Crow instability can lead to a decreasd ity cross diffusion, it appears that it proceeds too slowly and
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Figure 1. Schematic diagram of a pair of counter-rotating trailing vortices. In this configuration the mutual advection causes the vortices to move in the
downward direction (the negativedirection). The spanwise separation of the centers of the vortidearsl the core size is. The orientation of the
axis is also displayed. Note that thewxis points out of the page.
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over too long a distance to be of any use in destroying the effect of trailing vortices near airports. Recently, a
great deal of attention has been directed toward a faster instability of the counter rotating vortex system called
‘elliptical cooperative instability’ (e.g. Leweke and Williamson [5]). The axial length scale of this instability is
comparable to the vortex core size and the growth rate exceeds that of the Crow instability. The fundamental
process behind this short-wavelength instability has been the subject of a number of theoretical studies (c.f.
Widnall et al. [6]; Pierrehumbert [7]; Bayly [8]; Landman and Saffman [9]; and Waleffe [10]). Basically, the
strain produced by one of the vortices amplifies bends in the other vortex creating a sinusoidal modulation
of the core shape and position along the axial direction. The instability has been demonstrated in laboratory
experiments by Thomas and Auerbach [11] and Leweke and Williamson [5]. These experiments verified many
of the predictions of linear instability theory. As we will see in the next section, this instability does result in
cross diffusion of vorticity and, hence, can lead to the destruction of trailing vortices. The theoretical maximum
growth rate (e-folding time) of the instability is

9 ||
o==—,
8 2 b2

that is about 1r. Thus it would seem that the rate of growth is sufficient for our purposes. However, as we will
see below, it is not clear that this instability can be initiated with sufficient strength to cause significant distortion
of the vortices within the critical period of about 5The contribution of the trailing vortex problem to airport
delays means that the short-wave instability as it occurs now, triggered presumably by ambient turbulence,
is not sufficiently strong to destroy trailing vortices on a short enough time scale. By introducing velocity
perturbations in various forms, we tried to decrease the time scale of the destruction of the vortices in numerical
simulations, but found the results disappointing. This will be discussed in the next section on the cooperative
short-wave instability.

Our unsatisfactory results in trying to use the short wave instability to promote cross-diffusion suggested
the need for a more direct forcing of the system. It turns out that if one heats the vortices, they will move
closer together and descend more rapidly, both desirable effects. The idea that heating the vortices can cause
them to descend more rapidly may appear counter intuitive and deserves some further explanation. A theory
of this phenomenon is given by Turner [12]. The main idea is that even after the vortices are given a density
different from the surrounding fluid, they will continue to propagate as a vortex pair with the propagation speed
¢ = |T"|/2n b as given above. Let us taketo be the circulation of the vortex on the left (positivein figure 1
Then the propagation velocity in the (positivellirection is

(1)

u="r/2nb (2)

(i.e. the vortices descendlifis negative as in the figure). Next, we must be able to calculate the momentum of
the vortex system. If the density is uniform in théirection, then we can write

Po=[[ pudray, 3)

as thex-momentum per unit length. Assuming the vortex cores have depsigile the surrounding fluid has
densitypo, we then have the rate of change of momentum of the vortices given by the buoyancy per unit length,
that is

dpP,

g = 840, 4)
where A is the cross sectional area of the buoyant fligics 01 — po, and g is the magnitude of the acceleration
of gravity. Assuming that the difference between the density inside the vortices and in the ambient fluid is
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sufficiently small that it can be neglected in (3), we can then write

l§=m/yuwﬂy=m/yﬂ%wd% (5)

where we have used integration by parts, the definition of the vorgity: d,v — d,u and the fact that the
velocity field of a dipole of zero net circulation falls off fast enough to remove the relevant boundary terms.
Finally the model is completed by replacing the actual vortices of finite core size with line vortices of circulation
'aty=»b/2 and—T aty = —b/2. Thus we obtain

Since a uniform change in temperature of the vortices will not change their net circulation, and, since the flow
is incompressible, we can assume thand A do not change. Substituting (6) in (4) yields

db gA dp
—=-== U]
dr ' po
Thus if ' < 0 so that the vortices are descending, andpif< 0 so that the vortices are lighter than the
surrounding fluid, then they will move closer together. Integrating over time then gives

b=by— tgts—p. (8)
' po
It is typical to nondimensionalize length By and time byr when discussing trailing vortices. This is most
useful whenb is a fixed constant. Even with variabbe however, we can usefully introduce this system of
nondimensionalization by referring tg and zp, the initial values of these quantities. This system of scaling
will be denoted by an asterisk superscript. Writliig= b/by andt* = ¢ /1o we then have

b*=1—yt*, 9)
where
gATo 8p
y = —. (10)
boI" po

From the formula for the velocity of the vortices (2), we see that the closer the vortices move together, the faster
they will descend. We can ugefrom (8) in (2) and integrate in time to find how far the vortices move away
from the flight path by a given time. The result is

x* = —<L>1|n(l—yt*). (11)
INVS%
Note that the sign of* does not depend on the sign pf but only on the sign of”, which determines the
direction of the velocity. The logarithmic dependenceranay seem to indicate that the effect is weak, but
figure 2(a)suggests otherwise. Here we have compared the descents of the neutrally buoyant and the positively
buoyant vortices for values of the parameters typical of heavy commercial aircraft. We have also assumed that
the difference in density between the vortex cores and the surrounding fluid is only 10%. Using the values of
the relevant parameters given previously, we fing 0.2 and this was the value used in making the graphs in
figure 2 The curves are terminated &t = 4.5 because at that time the separatidnecomes equal to the core
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Figure 2. Graphs of the position of the trailing vortices relative to the flight path as a function of time. The position is given in units of the initial vortex
separatiorbg and the time in units ofg = anz/ . In the case of neutrally buoyant vortices (dashed line) the descent speed is constant. The buoyant
vortex case is shown with a solid line.

size, the vortices overlap, and the approximations that we are using are no longer valid. When the vortices are
close together, they will form a compact structure like the Lamb dipole, and the simple formulas given above
would have to be modified. We see frdigure 2(a)that after onery period there is about a 10% difference
between the descent distances for the neutrally buoyant and buoyant cases, but, dfterdfference is up

to about 30% and growing. Since the period of aboutiGrelevant for the approach of heavy aircraft, the
exhibited difference in trajectories is significant. More importantly, however, we note that the growth rate of
the cooperative short-wave instability increases with the inverse square of the separation, so we can anticipate
that this important growth rate is strongly affected by the decrease in separation. Combining (9) and (1) and
writing the results in non-dimensional variables, we have

*_g *72_9 _ *\ —2
o _8(b) _8(1 yre)e. (12)

We see infigure 2(b)that a change in density of just 10% can result in a near doubling of the instability
growth rate by timerg, tripling by time 2y, and a 25 fold increase by time 4Thus, the thermal effect of
Turner [12] can enhance the growth rate of the short-wave instability to such a level as to make it a method
worth considering.

In the next section, we will show some results from three-dimensional simulations suggesting that it may
be difficult to mechanically enhance the effects of the short-wave instability to the point that it would be
useful in destroying trailing vortices in practical situations. Then in section 3, we will show some evidence
from three-dimensional simulations that the Turner effect may produce the desired enhancement. Finally, some
practical considerations for actually employing this method for destroying trailing vortices are discussed in the
conclusion section.

2. Pureshort-wave instability

We base our study of the fundamental short-wave instability with no thermal effects on the Navier—Stokes
equations for a uniform-density incompressible fluid. Our numerical model solves the momentum equation
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which can be written as
al/t,' auiuj 8p 8214,'
= — Vv s
ot ax/' ox; anZ

with V -u = 0. The numerical scheme uses a staggered mesh with the velocity components located on the faces
of the cell and the pressure at the center, and a fractional step method in time (Kim and Moin [13]). Although
we would like to simulate the high Reynolds number flows appropriate to large aircraft, this is not possible
with the computing resources available. In all the simulations that we will discuss below, the Reynolds humber,
based on the vortex strengfRe=I" /v was taken to be 3400.

The choice of the structure of the initial vortices requires some care. If one starts with vortices whose vorticity
distributions in anv—y cross section are radially symmetric, then there will be a transition period in which fluid
is shed in the wake of the vortices during the period in which the structure of each vortex adjusts to the presence
of the other vortex. This adjustment is a purely two-dimensional process (cf. Carnevale and Kloosterziel [14])
and is of little interest to the present study. We could wait for this adjustment period to pass and then use
the resulting adjusted vortices as the initial vortices for our study. As an alternate approach, we found that
the adjustment phase could be mostly eliminated by using vortices whose structure is given by the analytical
formula for the vortices of the Lamb dipole (Lamb [15], section 165). This is a vortex structure in which
there are two counter-rotating vortices with the entire dipolar vorticity distribution confined in a circular region
whose radius we will denote hy,-. When unperturbed, the Lamb dipole propagates at a constant &peed
without change. For sufficiently high resolution, the form-preserving motion of the Lamb dipole can be readily
simulated. Taking as an initial condition the two semicircular halves of the Lamb dipole separated by some
distance, we found that in the subsequent evolution the two vortices adjusted more smoothly and without the
large amount of vorticity shedding observed in the case initialized with two circularly symmetric vortices. In
all of the simulations presented below, the unperturbed basic state is taken as the two halves of the Lamb
dipole with the vorticity extrema separated by some distance, and the initial condition is prepared by adding
perturbations to this.

A system of units that will be useful here is the advective time scaling based on the unperturbed Lamb dipole
with zero separation between the halves of the Lamb dipole. The unit of length in this sysigrans the
time unitisa,/U,. All quantities without the asterisk superscript will be in these units. The theoretical speed
of the unperturbed dipole in units 6§ and g is approximately* = 0.87 (cf. Kloosterziel et al. [16]).

In one series of simulations, we initialized the flow by adding a perturbation that was a randomly generated
three-dimensional velocity field. This perturbation was localized to the region were the axial vasticitas
greater in magnitude than a given threshold (set arbitrarily at 20% of the unperturbed vorticity maximum). The
random velocity thus generated was not solenoidal, but this defect was remedied automatically by the first time
step of the simulation which projects the initial velocity onto a solenoidal field. The perturbed field is then
found to have pointwise fluctuations in the cross vorticity componentsindw, of at most 20% ofw.olmax-
The basic simulation consisted of the interaction of the pair of the counter-rotating vortices for a fixed period
of time. Three different values were used for the separation between the vortices. By running experiments at
different resolutions and with different domain sizes, we found a representation of the short-wave instability
that compared very well with the laboratory results (Leweke and Williamson [5]) for the short-wave instability
when we set the number of grid points in each directio0Mas N,, N;) = (128 192 128) and set the domain
size as(Ly, Ly, L;) = (2r, 3w, ). The value ofL, was chosen to allow two full wavelengths of the fastest
growing mode of the instability. This choice of domain size will be discussed further below.

We performed three simulations with different valuesbofThe circulation was the same in each case:
I' = 6.83. The values ob were measured a short time after the initial adjustment of the dipole. In units of

(13)
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a, the values ob were 1.0, 1.4 and 1.9. There are various quantities that can be used to measure the progress
of the cooperative instability. For the unperturbed pair of vortices, the only nonzero component of the vorticity
is the axial vorticityw,. Thus a good indicator of the growth of an instability would be the evolution of the
maximum value of the magnitude of one of the other components of vorticitiiglme 3(a) we plot the
evolution of the maximum value of the spanwise vorticity for the three simulations with different values

of b. Vorticity and time have been nondimensionalized usings defined above. Also plotted is the history

of the maximum value of the axial vorticity (chain-dashed line) for one of the simulations. The curves for
w, each have a section that is roughly linear on this linear-logarithmic plot, indicating exponential growth in
time. Based on theoretical arguments, Leweke and Williamson [5] prediet 9/8 for the growth rate of the
cooperative instability. This is based on an assumption that the separatiderge and the flow is inviscid. In

the simulations reported here, the separatiomas taken as the initial distance between the vorticity extrema.
The growth rate for the largest separation cadse (.9) is found to be approximately 0.9. Viscous corrections

to the growth rate for this value éfgive a theoretical growth rate of* = 0.96. This is the closest match that

we have, and the discrepancy between theory and simulation is larger for the smaller valuBseofariation

in the growth rate withb is not entirely accounted for by viscous effects and may indicate that our valdes of
are not sufficiently large to apply the theoretical arguments without modification, but increasing the separation
while continuing to resolve all the features of the short-wave instability was beyond our resources.

Note that infigure 3(a)the value ofw, becomes comparable to. for +* ~ 13. The evolution of, (not
shown) is similar to that ofv,. The vorticity components i and y directions becoming comparable in
magnitude to the axial vorticity indicates that the dipolar structure of the vortices is breaking down. As we
will see, thew, andw, components produce strong deformations associated with small scales as would occur
in a transition to turbulent flow. One indication of the destruction of the vortices is the history of the circulation
which is shown infigure 3(b) This circulationI” was obtained by integrating the axial vorticity in each
plane for—L,/2 <y <0, and then averaging over By +* ~ 13, in all cases, there is a significant droplin
and this occurs at approximately the same time that the values afidw, become comparable to that ©f.
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Figure 3. (a) History of the maximum value of the spanwise vorticity for three cases: solié = 1.9, dashed + 1.4 and dotted» = 1.0. For
comparison, the history of the maximum value«f (chain dashed) fob = 1 is also plotted; (b) history of the circulation normalized by its initial
value. The line types for the different valuestoéire as in panel (a).
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To visualize the three dimensional character of the short-wave instability, we produced isosurface plots of
vorticity. Visualization by this method shows some structures that are very similar to those observed by dye
visualization in the experiments by Leweke and Williamson [5]. For each of the three simulations with different
values ofb the vorticity structures observed were qualitatively similar at the same times when time was scaled
with t. In figure 4 we show the isosurface plots of the magnitude of the vortieityfor the casé = 1.9. The
isosurface value is the same at each time shown ahd/isg| = 0.4 where|wg| is the maximum magnitude
of the unperturbed dipole vorticity field. In both the laboratory experiments and the simulations the sinusoidal
bending of the vortex cores is in phase, that is the instability is sinuous. This is interesting because when the
effect of one vortex upon the other is modeled as pure strain, there is no mechanism for choosing the phase
relationship between the distortions of each vortex. The isosurface plot f6r9.0 in figure 4 represents
the field at a time in the exponentially growing phase of the instability figfire 3(a). We compared the
perturbation vorticity and velocity fields at this point in the evolution to the predictions of linear theory based
on Rankine (top-hat profile) vortices and the match was very good. By:tirael0.5, nonlinear effects are
evident. The formation of ‘caps’ on the points where the isosurface is most curved results from vortex stretching
in the spanwise direction. This is followed by the production of the vortices seénr=at2.0 which span the
two original cores and which begin the cross-diffusion of circulation.

As for the wavelength of the fastest growing mode, theory based on a Rankine vortex (uniform vorticity core)
predicts a wavelength = 2.51az, whereay is the radius of the core. Unfortunately, since our vortices are not

—

R Rl
R

Figure 4. Isosurface plots ofw/wg| = 0.4 for the case of the two vortices separatedbby 1.9. The times represented from left to right, top to bottom,
arer* =1.5,9.0, 10.5 and 12.0.
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circularly symmetric in cross section and do not have a uniform distributies ,af is not clear what distance
should be used fari in making a comparison with the theory. Since the Rankine vortex achieves its maximum
vorticity at the radial positiorig, we can try to substitute for this the radius where the maximum value of
velocity is achieved along some radial directiontA& 9.0, for the casé = 1.9 shown infigure 4 the distance
between the points of minimum and maximuinfor one of the vortices is approximatelyd®a,. Substituting

this value forag, the wavelength of the fastest growing mode shouldike 1.73a,. In the simulation we
found A = 0.5mra, ~ 1.57a,, which is within about 10% of the predicted value. The possible wavelengths in
the periodic domain are discrete and the instability cannot pick out a wavelength that is not one of the discrete
set. We varied_, over a large range of values, sufficiently large to observe the transition to both one and three
full wavelengths within our domain. We found that variations.gfby 10% from the value that we chose did

not change the growth rate appreciably, while variations just beyond this did produce slower growth rates. Thus
we were satisfied thdt, = ra, was a reasonable choice choice for the domain size.

From a practical standpoinfigure 3(a)suggests that random perturbations applied to the vortices is an
inefficient way to initiate the cooperative instability. The initial perturbation has maximum vorticity amplitude
of about 20% that of the unperturbed vortices. However, this amplitude decays greatly in the initial transient
period, and the larger the value kfthe lower the value reached in this initial decay. It took abaufds the
exponential growth of the unstable modes to become evident. It appears that much of the initial perturbation
is composed of decaying modes. The small proportion originally in growing modes eventually amplifies and
dominates, but this appears to be a relatively long process for our purposes. If the perturbation could be applied
purely in the fastest growing normal mode, then, theoretically, the transient phase could be avoided. With an
inviscid theoretical maximum growth rate ef = 9/8, the period of growth would only need to be aboutt@
begin the destruction of the vortices. We attempted to initialize the flow field with the dipole perturbed by the
fastest growing eigenmode predicted by theory based on the Rankine vortex in a pure strain field (Leweke and
Williamson [5], Orlandi et al. [17]). This reduces the transient period by about half but still leaves a significant
period of decay and a period of abouti8 still required for the destruction of the circulation to start. Given that
our initial vortices are not Rankine vortices and that there is a distortion of each vortex due to the presence of
the other, it is not surprising that the theoretical normal mode based on the Rankine vortex in a pure strain field
is not a pure growing normal mode for the actual dipole. This result tends to suggest that it would be necessary
for the initial perturbation to very closely approximate the form of the fastest growing mode in order to excite
this mode to significant levels within a few This seems impractical from the viewpoint of aircraft design.
Therefore, we turn to thermal forcing and the Turner effect as an alternate approach to the problem.

3. Thermal forcing of trailing vortices

The simplest approximation that includes the buoyancy force due to small density variations is the
Boussinesq approximation. If the acceleration of gravity is taken to be in the negadivection, which is
the direction of our dipole motion, then the Boussinesq approximation for the momentum equation can be
written as
aui 8M,‘Mj _ ap’ 1 Bzui
at  dx;  dx; Redx;?

and the equation for the density is

— 0681, (14)

90  00u; 1 9%

N = : 15
ot dx; ReProx;2 (13)
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This notation assumes the directiansy, z are numbered sequentially from 1 to 3, aiadis the Kronecker
delta. These equations are nondimensionalized using lengimd timea,/U,. The dimensionless density
is given by
/
g_P gag’
poU7

(16)

wherep’ is the perturbation to the background dengigy andg is the acceleration of gravity. Note thatis
the pressure less the background pressysggx. The Reynolds number is given Be= U a, /v, andPr is
the Prandtl number given IBr = v/ wherex is the thermal diffusivity.

In deriving the Boussinesq approximation, various terms are neglected under the assumptionotiet
sufficiently small. In particular, a term equal to

(%) Goor)

P/ \po dx

has been neglected. The Boussinesq approximation is strictly valid only if this term is small compared to the
retained tern®. This can be translated into the statement that the centripetal acceleration within the trailing
vortex, which is on the order df2/a, should be much less than the acceleration due to gravity. Assuming a
vortex circulation of 100 /s and a core radius of about 5 m would make the ratio of centripetal to gravitational
acceleration about 1/2. So, our simulations wWitk: 100 n¥/s case, a value typical of medium sized jet aircraft,

are probably at the extreme limits of the validity of the Boussinesq approximation, and simulation with the
full Navier—Stokes equations should be performed in the future to verify the results obtained here. For the
stronger circulation typical of the heavy commercial aircraft discussed in the introduction, it would certainly
be necessary to use the full Navier-Stokes equations for accurate predications, but, hopefully, our simpler
Boussinesq simulations will provide some first insights into the effect of thermal forcing.

To see how buoyancy forcing affects a pair of counter-rotating vortices, we began with a simple test. We
used the same basic vortex pair as in the previous section. To these vortices we added an initial distribution of
6 that was taken to be independent of the axial coordinaséad proportional to the magnitude of the vorticity
in each of the vortices with the maximum amplitude sefpatin one case we tooly; = +1 and in the other
6o = —1. Since there was no variation in the axial direction, two-dimensional numerical simulations sufficed to
show the evolution. Ifigure 5 where we have plotted the trajectories of the extrema of vorticity for these two
simulations, we see the interesting effect of the temperature perturbation. As predicted in the introduction, the
speed of the ‘heavy’ vortices decreases, and the separation of the vortices increases, while the ‘light’ vortices
move closer together and their rate of descent increases.

To translate the nondimensional valuesdofised here into physical values, we have recourse to order of
magnitude estimates. First we estimate the values to use/fand U, in formula (16). The radius of the
vortices in the unperturbed Lamb dipole cannot be related easily to the radius of actual trailing vortices. In the
case of the dipole witth = 1.9, we found a maximum velocity at a distance of abouu@.#¥om the center
of the vortex. Thus if we take a core radius for a trailing vortexsas 5 m, then we would estimate; to
be somewhat larger, say- = a/0.7 ~ 7 m. The speed/, of a Lamb dipole in terms of the circulation of
its vortices andi is given approximately by/, =TI'/(2.2ra,) (see Carnevale and Kloosterziel [14]). With
I' = 100 n?/s, this would giveU, =~ 2 m/s. Thus for|6g| = 1 the magnitude of the density variation as a
percentage of the background would be 6% according to formula (16). In terms of temperature, this would
correspond to about a 20ariation on a background of 30K.
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Figure 5. Trajectories of the vorticity extrema faly = —1 (open circles) andp = +1 (solid triangles). The vortices propagate in the negative
direction. The total period of time represented is 5 in advective time units. The symbols represent positions taken at time intervals of 0.1.

It is interesting to consider how the temperature variation forces the growth of the non-axial vorticity. Taking
the curl of the momentum equation, we obtain the vorticity equation,

dw; dw; du; 1 9%, 30 17
ot T"ax, = “ax, TReoxz  ax, (17

from which we can see how the buoyancy term directly forces the vorticity compangatslw, . In particular,

a modulation of in the z direction will directly force the growth ofv,, which is the field that we used to
monitor the progress of the cooperative instability in the random initial velocity perturbation cases. There we
found that wherw, became comparable to,, strong cross diffusion between the counter-rotating vortices
occurred. Thus if we can accelerate the growtlwpfoy modulatingd in the axial direction, we may achieve

a more rapid destruction of the coherent vortices. Since the rate of growthwiil be directly proportional

to 00/0z we can expect that the early growth will be linear in timeddf/dz is sufficiently large, this linear
growth can dominate the exponential growth of an eigenmode perturbation of the cooperative instability.

Hoping to combine the effects of both temperature forcing and the cooperative instability, we decided to
modulate the temperature field with the same wavelength that was observed to be the wavelength of the
fastest growing mode in the experiments with random initial velocity perturbations. Restricting ourselves to
a density perturbation that is everywhere negative, as may be achieved by heating, we chose to modulate the
density in the axial direction by multiplying our original perturbation described above with a factor given by
0.5(1 — sin(ky2rz/L,)). With L, = wa,, the appropriate wavenumberfig = 2. We performed a series of
simulations with different amplitudes f@g (the maximum value of the initial perturbation). Figr= —1, we
found that the values dfv,|max grew to the same levels as in the random perturbations cases but in a much
shorter time. This is shown ifigure § where we plot the results for the same three values of the separation
b as used in the previous simulations. For comparison, we also plot the results from the runs described in the
previous section where the only perturbation was the random velocity perturbation. The time scaj@ists
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Thus, we see that fat, levels of |w,|max Sufficient to destroy the coherence of the vortices are reached in a
period of a fewry units. Also, it is encouraging that as the distahdeetween the vortices increases, the time
at which the peak ifw,|max is reached decreases.

In figure 7, we show the evolution of an isosurface of vorticity magnitude of the thermally perturbed vortex
pair for the casé = 1.9, 6, = —1. Note that since the vortices will be drawn together where the density is
lowest, and since temperature is distributed with the same phase on each vortex, the pair is forced into the
varicose mode. Recall that in the case of the random velocity perturbations, the fastest growing mode was
sinuous. This suggests that it may be possible to increase the growth rate of the instability by shifting the phase
of the temperature on one vortex relative to the other in the temperature modulation in the axial direction. We
performed two additional simulations, with phase shifts 7 /8 andrx /4. The resulting graphs of the evolution
of |w,|max are shown irfigure 8(a)along with the graph for the = 0 case. Although there does not appear to
be much difference in the growth during the early phase, which is dominated by buoyancy forcing, ultimately
the shift byz /4 does yield an increase in the peak amplitude by a factor greater than 2. Thus it seems that
the phase shift does enhance the growth in the period of the evolution that we suppose to be dominated by
cooperative instabilityFigure 8(b) shows the history of” which is calculated by summing all of the axial
vorticity separately foy < 0. This shows that the introduction of the phase shift causes the circulation to decay
earlier and more rapidly. Unfortunately, it does not seem possible to force the two vortices into a sinuous mode
by using heating alone.

I

Figure 6. History of |wy|max for the dipoles separated Iby= 1.9 solid, dottedb = 1.4 andb = 1 dashed. The curves without symbols correspond to
the cases perturbed initially with the random velocity field, while those with circles correspond to the cases initially perturbed with spitidy-pe
density variationsfy = —1).

Figure 7. Plots of the isosurfacky|/wg = 0.64 atr* = 1 (left) andr* = 2 (right).
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Figure 8. History of (a) spanwise vorticity and (b) circulation for sofid= 0, dottede = /8 and dashed = /4.
4. Conclusions

We have obtained some encouraging results that suggest thermal forcing may be useful in promoting both
the rapid departure of vortices from a flight path and the acceleration of short-wave instabilities that can lead
to the destruction of the vortices through cross-diffusion. Our work is only preliminary since it was limited
by available computational resources to deal with only short spaarl relatively moderate vortex strength
I'. We already mentioned above that for the thermal forcing problem, our Boussinesq code is not well suited
for dealing withI" ~ 500 n¥/s and hence we restricted ourselves tolitre 100 n¥/s case. To go to stronger
vortices would require solving the full Navier Stokes equations. As for the limitatial typical wing spans
for heavy aircraft are such thaya ~ 12 while here we have reported only values up to 1.9. It is tempting to
push beyond this limit. We did perform runs with somewhat larger valués lofit with DNS there are some
fundamental limitations. In particular, the dependence of instability growth rates on viscosity becomes an issue.
Up to this point we have not discussed the role of viscosity in determining the growth rate of the short-wave
instability. For real flight situations, the Reynolds number is sufficiently high that this effect is not of concern.
However, in our simulations we must keep a relatively low Reynolds number to avoid numerical instabilities
and inaccuracies. For a finite Reynolds number a theoretical prediction for the short-wave instability growth
rate is (cf. Leweke and Williamson [5])

9T 2
7T 822 O
wherekg is the wavenumber of the fastest growing mode, which is approximately givenyr /a. Thus, for
b sufficiently large, viscous decay will inhibit the instability significantly. Using the Reynolds number defined
by the vortex strength, we see from (18) that the Reynolds number should be much smaller than@lget.55
Thus with our Reynolds number set at 3400, as in the simulations discussed above, viscous effects would not
be significant forb/a up to about 2.5. Also a5 is increased, the size of the domain and, hence, the number
of grid points must be increased. Using the DNS method in a simulationayith= 12 while resolving all
relevant scales would be prohibitively expensive in computer resources and is left for future investigations.

As for the practicality of using density perturbations, we can say a few words here. We imagine that the
method of producing the density variation for aircraft trailing vortices would be by heating within the vortices.
This could be accomplished either by redirecting and modulating the existing jet exhaust or by adding auxiliary
burners in the vicinity of the points where the vortices roll up (e.g. wing tips, and flap edges). This heating

(18)
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would only be required during takeoffs and landings. Consider the problem of modulating the temperature of a
vortex with a sinusoidal perturbation of wavelength about twice the vortex core radius with an amplit@e 30

over say a distance of 10 km. If we take the estimateg ©f5 m for the core radius and 300 km/hr for the

plane speed, we calculate that the total amount of Kerosene that would need to be burned to produce such a
perturbation would be only about 140 kg. This would seem a reasonable cost if the result were to substantially
minimize the effect of the trailing vortices.

To conclude, let us say that although our preliminary results indicate that the Turner [12] effect is a good
candidate for alleviating the problems of trailing vortices, it will require a substantial modeling effort to see if
these ideas will scale up to stronger vortices with larger separations. Alternatively, we may suggest that a more
efficient way of proceeding at this point may be through laboratory experiments.
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